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An exact analysis using the Langevin equation approach proves that an asymmetric-inhomogeneous har-
monic chain with self-consistent inner reservoirs does not rectify heat, while it may show diffusive heat
transport properties. Thus, we argue that the onset of a formal Fourier’s law in an asymmetric system does not
guarantee an asymmetric heat flow.
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Thermal rectification, namely, an asymmetry of the heat
current with respect to the temperature bias has recently at-
tracted considerable theoretical �1–10� and experimental
�11,12� interest, demonstrating the effect at the nanoscale.
The basic theoretical challenge here is to identify the neces-
sary and sufficient conditions for manifesting this effect in
classical �9� and quantum �13� systems. Generally, it was
argued that in order to rectify heat the system should include
anharmonic interactions, combined with some built in asym-
metry �14�.

More basically, a long standing challenge in statistical
mechanics is a first-principle derivation of the Fourier’s law
of heat conduction J�−�T �15�. While most studies are re-
stricted to classical models, using classical molecular dy-
namics simulations �16�, recent works targeted this problem
quantum mechanically �17,18�. Furthermore, analytical
methods were recently developed for approaching this chal-
lenge rigorously �19–21�.

It is obvious that a fully harmonic Hamiltonian system
does not follow this diffusional law, as it is lacking a mecha-
nism for local thermalization. A two-terminal harmonic junc-
tion rather obeys an elastic Landauer-type expression �22�,
J=�d��T����nB

L���−nB
R����. Here T is a frequency-

dependent transmission coefficient and nB
� = �e�/T� −1�−1 is the

Bose-Einstein distribution evaluated at T�; �=1, kB=1. The
index �=L ,R denotes the terminals. This expression does not
bring in thermal rectification, irrespective of the existence of
impurities or disorder. It is thus natural to ask whether in
general there is any connection between the applicability of
the Fourier’s law of heat conduction and the onset of thermal
rectification, and vice versa, given that some spatial asym-
metry is presented in the system.

We may pose this question as follows. �i� Suppose a sys-
tem manifests thermal rectification, does it necessarily obey
the Fourier’s law J�N−1, N is the system size? �ii� From the
other direction, if an asymmetric system obeys the Fourier’s
law, does it necessarily rectify heat? The answer to the first
question is negative. Extensive numerical simulations of heat
transfer in nonlinear-asymmetric systems manifest rectifica-
tion, while the heat current follows J�N�−1, with ��0 in
general �15�. In particular, the Fermi-Pasta-Ulam model was
proved to have anomalous conductivity �23�, while its mass-
graded version gives rise to rectification �8�. The answer to
the second question is not as obvious. Most models attained
the Fourier’s dynamics based on the existence of explicit

nonlinear interactions, leading to the thermal rectification
phenomenon when asymmetry is introduced. However, the
J�N−1 dependence can emerge in other cases, e.g., in a dis-
ordered harmonic chain with frequency-dependent friction
coefficients �24�. Here we present a case study where diffu-
sional dynamics might be reached, yet thermal rectification is
absent.

The self-consistent �SC� harmonic chain is a simple
model that can be analytically studied. It includes N har-
monic oscillators with each inner site �n=2,3 , . . . ,N−1�
coupled to a SC stochastic reservoir. The temperatures of
these interior baths are determined by demanding that in
steady state, on average, there is a no net heat flow between
the chain and the reservoirs. In contrast, the first and the last
particles are coupled to “real” reservoirs with fixed tempera-
tures. This model was established a while ago �25� as an
effective mean for incorporating on-site anharmonic poten-
tials: The SC inner reservoirs do not exchange energy with
the system in steady state, but they do present a mechanism
for phonon scattering. In what follows we also refer to “iso-
lated chains,” where in this case the SC reservoirs are turned
off. Interestingly, it was recently shown �26� that the heat
current of a SC harmonic system follows the Fourier’s law
for long enough chains. This is, in contrast, to the isolated
case, where J is independent of size assuming Markovian
baths �15�. The quantum version of the SC harmonic model
was investigated using the quantum Langevin equation ap-
proach �27–29�, manifesting a crossover from ballistic to dif-
fusional thermal transport with increasing size.

Can this model bring in thermal rectification? In a recent
paper Pereira et al. �30� returned to the classical SC model,
and analytically studied the heat conduction properties of its
inhomogeneous �mass graded� version. Using a perturbative
treatment the authors proved that this system obeys Fourier’s
law, yet it does not rectify heat. Based on their results they
posed the question whether an �effective� anharmonicity
combined with an asymmetric inhomogeneity are sufficient
to ensure thermal rectification.

In this paper we include a short proof of the absence of
thermal rectification in the classical asymmetric SC har-
monic system. In our model the particles’ masses are distinct,
and we also adopt asymmetric couplings �friction� to the L
and R solids. Using the Langevin equation formalism we
prove that �i� the temperature profiles for forward and re-
versed bias are symmetric with respect to the average tem-
perature, �ii� the asymmetric SC harmonic chain does not
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rectify heat. We argue that this is because there is no energy
exchange between modes.

The paper is organized as follows. First we present the SC
harmonic model and discuss its temperature profile, unique
for harmonic systems. Based on this result we proceed and
prove that thermal rectification is absent in this model.

Model and dynamics. We study classical heat transfer in a
mass-disordered harmonic-chain model, attaching a SC res-
ervoir to each site. The Hamiltonian of the system is given
by the sum of quadratic terms

H = �
n=1

N
mnẋn

2

2
+ �

n=0

N
�xn+1 − xn�2

2
, �1�

where mn is the nth particle mass, xn is the particle displace-
ment around equilibrium, and we use fixed boundaries x0
=xN+1=0. The force constants are all set to 1. The atoms are
put in contact with independent Ohmic heat reservoirs with
coupling strengths expressed in terms of friction coefficients
	n. We set 	n=	c for the central particles n=2, . . . ,N−1 and
	1=	L, 	N=	R for the end atoms. In order to induce spatial
asymmetry, we also enforce 	L�	R. We define the average
temperature Ta=

TL+TR

2 and the difference 
T=TL−TR. The
dynamics of this system follows the Langevin equation �27�

mnẍn = − 2xn + xn+1 + xn−1 − 	nẋn + �n, �2�

where the thermal-white noise obeys the fluctuation-
dissipation relation ��n�t��n��t���=2Tn	n��t− t���nn�. The
transport properties of the homogeneous model, in the quan-
tum limit, were analyzed in Ref. �27� manifesting a crossover
from a ballistic to diffusional dynamics with increasing in-
ternal friction 	c and size. In the linear response regime,

T
Ta, and for 	c
1 it was shown that

J � 
T/�N + l� , �3�

where l=3 /	c �28�. We prove next that in the classical limit
the system does not rectify heat, i.e., J�
T�=−J�−
T�, for
arbitrary size N, coupling strengths 	n, mass distribution, and
boundary temperatures TL/R.

Thermal baths’ temperature profile. The temperatures of
the first and last reservoirs are fixed at T1=TL and TN=TR,
respectively, while the temperatures of the interior reservoirs
are determined self-consistently by the condition of net zero
current from the chain to each side reservoir. In steady state,
recognizing that the random forces can be represented as
harmonic driving terms �31�, we obtain �N−2� linear equa-
tions for n=2,3 , . . . ,N−1 �27�,

�
p=1

N

	p	nMn,p�Tn − Tp� = 0, �4�

where

Mn,p = 	
−�

�

d�
�2

�

Gn,p���
2. �5�

The matrix G��� is the inverse of a tridiagonal matrix with
off-diagonal elements equal to −1 and diagonal elements 2
−mn�2− i	c�, except the end points where 2−m1,N�2

− i	L,R�. A key element in our derivation is the fact that the

matrix M does not depend on the temperature difference 
T.
We rearrange Eq. �4� and rewrite the temperature profile as

T = TaA−1v+ +

T

2
A−1v−, �6�

where A is an �N−2�� �N−2� matrix with diagonal elements
An,n=�p�n	n+1	pMn+1,p �p=1¯N� and nondiagonal ele-
ments An,n�=−	n+1	n�Mn+1,n�. The vectors v� are defined as
vn

�=	n+1	1Mn+1,1�	n+1	NMn+1,N and T is the vector of the
steady-state temperature at the 2 ,3 , . . . ,N−1 inner sites.
Next we interchange the temperatures TL and TR and attain a

new profile T̃

T̃ = TaA−1v+ −

T

2
A−1v−. �7�

The sum of the last two equations is a constant T̃+T
=2TaA−1v+. Moreover, evaluating Eq. �6� with 
T=0 reveals
that A−1v+= I, a vector of N−2 ones, concluding that

T̃n + Tn = TL + TR. �8�

We can also rewrite the last relation as

Tn = TL +

T

2
��n − 1�, T̃n = TR −


T

2
��n − 1� , �9�

with �n��A−1v−�n. This is a unique property of our system:
The temperature profiles for forward and reversed bias are
symmetric, with the mirror line at Ta. Note that Eq. �9� does
not necessarily imply a linear Tn�n, profile. It also holds for
arbitrary sizes, not only in the asymptotic N→� limit, as in
Refs. �26–28�.

Simulating Eq. �9�, Fig. 1 shows that for a fully symmet-
ric system the temperature profile has two reflection symme-
tries, with respect to both the coordinate and the temperature.
When we break the spatial symmetry by taking 	L�	R, the
symmetry with respect to Ta still holds, see Fig. 2.

The temperature profile along an isolated-chain model
�	c=0� with explicit internal anharmonic interactions, as-
suming asymmetric couplings at the ends, can be obtained by
directly simulating the Langevin equation. In this case we
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FIG. 1. Temperature profile in a symmetric-homogeneous SC
harmonic chain 	L=	R=1, 	c=0.1, N=10, m=1. �L=0.5, �R=1
�circle�; �L=1, �R=0.5 �square�. The dashed line marks the average
temperature Ta=1.5.
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found that the forward and backward profiles significantly
differ �3�, revealing that the SC harmonic model is funda-
mentally different from genuine anharmonic models.

Absence of thermal rectification. We prove next that ther-
mal rectification is absent in the asymmetric SC harmonic
model. The steady-state current through the chains’ bonds is
given by �27,28�

Jn,n+1 = − �
p=1

N

	pTpSn,p, �10�

with the coefficients

Sn,p = 	
−�

�

d�
�

�
Im�Gn,p���G

n+1,p
* ���� . �11�

The explicit notation J=Jn,n+1 marks the position along the
chain where the current is calculated. In equilibrium �
T
=0�, Ta=TL=TR, and we should trivially retrieve a constant
temperature profile Tn=Ta with zero interparticle current.
Using Eq. �10� we find that the Sn,p coefficients must there-
fore satisfy the relation

�
p=1

N

	pSn,p = 0. �12�

Next we interchange the L and R temperatures, resulting in
the new profile T̃n=TL+TR−Tn, see Eq. �8�. The reversed
heat current �10� becomes

J̃n,n+1 = − �
p=1

N

	p�TL + TR − Tp�Sn,p

= �
p=1

N

	pTpSn,p − �TL + TR��
p=1

N

	pSn,p. �13�

Utilizing Eq. �12� we conclude that the second term here
vanishes, thus J̃n,n+1=−Jn,n+1, i.e., thermal rectification is ab-
sent in the system. Note that we derived this result without
calculating explicitly neither the internal baths’ temperatures,
nor the heat current in the system. The SC harmonic model
can thus establish a Fourier’s type dynamics for long systems
�27,28�, but it cannot bring in thermal rectification irrespec-
tive of system size, mass distribution, and coupling strength.
This is the main message of our paper: The onset of a formal
Fourier law �in an asymmetric system� does not guarantee
thermal rectification. While a J�N−1 dynamics may result
from several effects, e.g., the spectral properties of the res-
ervoirs �24�, thermal rectification is a phenomenon originat-
ing from nonlinear interactions �13�.

To conclude, based on the Langevin equation approach
we obtained two interesting characteristics of the asymmetric
SC harmonic model. �i� The internal baths’ temperature pro-
files for forward and reversed bias are mirror reflected with
respect to the average temperature Ta, irrespective of struc-
tural asymmetry and disorder. �ii� Thermal rectification is
absent. Our results could be also generalized to the asymmet-
ric force constant case, and it is of interest to extend them to
the quantum regime.

Finally, we argue that one should interpret Eqs. �10� and
�11� as a multiterminal elastic transport expression, where
the heat flux is given by the sum of independent frequency
terms. Therefore, though the system develops a local tem-
perature profile, in contrast to the isolated �	c=0� case, this
results from the interaction with several thermal reservoirs,
and not due to energy exchange processes between phonon
modes.
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